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Abstract

This work describes a software tool intended for the evaluation of spectral
portraits of nonsymmetric matrices. This requires to compute the 2-norm of
the matrix (A —2I)~1, for points z in a discretized region of the complex plane.
In order to estimate this 2-norm, i.e, the smallest singular value of (A — z1), a
Lanczos procedure is applied to the matrix H,(z) where

H(z) = <(A —OZI)* (A - ZI))

The importance and fundamentals of spectral portraits are first reviewed. Then,
we describe the sequence of operations required for their evaluation, including
the estimation of the required eigenvalues and implementation details. Next,
we give a wide range of study cases. Finally, a user’s guide is provided, with a
description of the required input and output files.

fCentre Européen de Recherche et de Formation Avancée en Calcul Scientifique, 42 av. G.
Coriolis, 31057 Toulouse Cedex, France, e-mail: marques@cerfacs.fr

!ERIN-ESTIN et Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique,
42 av. G. Coriolis, 31057 Toulouse Cedex, France, e-mail: toumazou@cerfacs.fr



Contents

1 Introduction

2 Spectral portrait description
2.1 Singular Value Decomposition method . . . . ... .. .. ... ...
2.2 Normal Equation method . . . .. ... ... ... . .........

2.3 Augmented Matrix method . . . . ... ... .o oL

3 Spectral portrait computation
3.1 Spectral portrait determination . . . . . ... ... ...
3.2  Eigenvalue computation . . .. ... .o oL Lo
3.2.1 Generalities . . . . . ..o L
3.22 Method . . . ...
3.2.3  The computation of [[A|l2 . . . .. ... L
3.24  The computation of |[(A—z[)" 2 .. ... ... ...
3.2.5 Restarting strategy . . . . . . .. ...

3.2.6 Implementation details . . . . . . ... ... ...

4 Numerical results
4.1 Description of the Figures . . . . . . .. ... ... ... ...
4.2 Test cases . . . . . .
4.2.1  W(50), a Wilkinson matrix and a very striking example . . . .
422 LaRosematrix . . . .. .. .. ... .

4.2.3 Tolosa matrix . . . . . . .« . .

10

11

11

12

13

13

13

14



4.2.4 Pores3 matrix

4.2.5  Matrix from Electromagnetism . . .. ... ... ... ... ..

4.3 About CPU time . .

5 Conclusion

A Description of the code

B User’s guide
B.1 INPUT files . . . . .

B.2 OUTPUT files . . . .

B.3 Matlab post-processing

19

22

22



1 Introduction

Eigenvalue computations are very important for the study of the stability of physical
problems.

However, in finite precision arithmetic, some problems may occur in the computa-
tion of eigenvalues related with highly nonnormal operators. Tests performed with
matrices for which the departure from normality is parametrized, show that the QR
method may converge to eigenvalues far away from the exact solutions (see Chatelin
and Frayssé (1993)).

For some applications in physics, for instance, one must be sure that all the eigenval-
ues have a negative real part. If the associated operator is nonnormal, the real part of
some computed eigenvalues may become positive. On the other hand, Trefethen has
shown that in hydrodynamics, the use of perturbed operators may lead, in several
cases, to results matching those of physical experiments (see Trefethen, Trefethen,
Reddy, and Driscoll (1993)).

Therefore, the question is : How does a perturbation affect an eigenvalue?

A possible answer is given by the condition number, which can be computed for sim-
ple eigenvalues, but in the case of defective multiple eigenvalues only an upper bound
exists. The classical tools turn out to be unsuitable.

In order to overcome this, one should examine the eigenvalues of A + AA and not
only those of A. Thus, we define an e-pseudoeigenvalue and an e-pseudospectrum of

A:
e )\ is an e-pseudoeigenvalue of A if

A is an eigenvalue of A 4+ E with || E|2 < ¢||A]|2

o The e-pseudospectrum of A is defined by

A(A) = {z €; z is an e—pseudoeigenvalue of A}

We will see in the next section that, for a fixed €, the border of A.(A) can be defined
as {z €C; | AlfI(A = 21) 7l = 2}

Godunov (1991) calls the graphical representation of
z — logio([|All2l| (A — =1)7]l2)

the spectral portrait of A.

Unlike the condition number, which is a first order estimation and allows the study
only in a circle around the singularity with radius tending to 0 (asymptotic behaviour),
the spectral portrait allows the study of the influence of the singularity in a larger
topological neighbourhood.

In a previous report (Marques and Toumazou (1995)), we have listed three different
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ways to compute the spectral portrait and focused on the Normal Equation method.
Because of the high condition number of this method for computing ||(A — 21)7Y|2,
some problems with accuracy and pigmentation of the spectral portrait in the neigh-
bourhood of some singularities , occured with nonnormal matrices. We will study
now the third method, called the Augmented Matrix method.

2 Spectral portrait description

By means of Turing’s theorem, one can show that {z € (';z is an eigenvalue of
A+ AA; ||AA]l2 < e||All2} is equivalent to {z € C; ||(A — z1)7|2]|All2 > %}

The proof can be found in the book Non-normal matrices and Pseudo-FEigenvalues
writen by Trefethen.

Therefore, to compute a spectral portrait, the main problem consists in the evaluation

of

z— [(A—=zI)7|y for z € . (1)
1

We recall that ||Bl|s = 0/maz(B) and ||B7!|2 = W7 where B is an n X n matrix
Omin

and {o;(B)}", its singular values. We denote by 0,:,(B) and 0,,4,(B) the smallest
and the largest singular value of B, respectively.

Equation (1) can be rewritten as

Omin(A — zI)

which requires the determination of the smallest singular value of a matrix.

The evaluation of (2) can be performed in different ways. Three of them were listed
in Marques and Toumazou (1995), namely the Singular Value Decomposition (SVD)
method, the Normal Equation method and the Augmented Matrix method. In that
report, the Normal Equation method was examined and its numerical results were
compared with the ones provided by the SVD method.

In the next sections, we will briefly review the SVD method, the Normal Equation
method and their respective drawbacks (CPU time, condition number) with respect
to the computation of o,,;,(A — zI). The Augmented Matrix method will then be
described in more detail.



2.1 Singular Value Decomposition method

This method (see Golub and Van Loan (1989)) is very reliable but computationally
expensive. The corresponding condition number for the computation of o, (A — 21)

is given by
A= zD)s

Omin(A —2I)
The proof can be found in Marques and Toumazou (1995).

C N(svd)

2.2 Normal Equation method

We compute 0,,in(A — z1) in the following way :

(A= 21) = [ Amin (A — 21)(A — 2I))

where (A — zI)* denotes the conjugate transpose of (A — z1).
Since we only need to compute the smallest eigenvalue, we can use a projection
method. However, the drawback of this method is that the condition number for the

computation of o, (A — 21) is
CN(ne) ~ (CN(svd))* .

In Marques and Toumazou (1995), the reader can find the proof and numerical ex-
amples for which such high condition number causes problems.

2.3 Augmented Matrix method

This method is based on the use of the augmented matrix H,(z) = ( (4 _OZ])* (A B zI) )

to compute the singular values of (A — zT1).
Since

sp((A — zD)*(A — zI)) = {(01(A — zD))?, (02(A — 21))?%, ..., (0n(A — 21))*}

we can write

sp(Ha(2)) = {=A(Ha(2)), s =M(Ha(2)), M (Ha(2)), - An(Ha(2))}

= {—on(A—2zl),....—o1(A—zI),01(A — zI),...,00(A — 2zI)}



We recall that sp(B), A(B) and o(B) denote the spectrum, an eigenvalue and a sin-
gular value of any matrix B, respectively.

Thus to determine ||(A — zI)7!||2, we have to compute oy(A —z1) = A\ (H,(2)) which
is an eigenvalue of the hermitian matrix H,(z).

Analogously, we have ||A|z2 = Az (12* 1(4)1) = Anaz(Ha(0)).

The Augmented Matrix method works with a matrix whose size is twice as large
as the corresponding matrices of the other two methods. However, we can profit from
the block structure of ‘H,(z) and its hermitian property. Therefore, we never store

H.(z) but only A.

The condition number for the computation of 0,,:,(A — zI) satisfies

CN(am) < V2/n CN(svd) .

Proof :

The condition number of the eigenvalue A\ (Hq(z)) = 01(A — 21) is

1Ol lled 2]
CNam) = "R H )] Jr.a

where x and z, are the right and left eigenvectors of H,(z) corresponding to Ay (Hy(z)).
Since H,(z) is hermitian, we have z, = x and ||z||; = 1.
Thus, we can write

)l
CNlam) = )]

but
Mol =D a5+ > aif = 1A = 2Dl + (A = 2I)"|[p = 2/[(A = 21|,
0] 0]

where a;; and aj; are the coefficients of the matrices (A — 27) and (A — 2I)*, respec-
tively.
Because |[(A — zI)||p < /n||[(A — 21)||2, we can write
1Ha(2)]l2 < V2V/n|(A = 21)]|2
and

VIVII(A = 2D)lle _ vV2Vall(A - 2T)
CN(am) < (o ()] < Omin(A — 21)

I <V2vn CN(svd) .



The method chosen to compute Ay (Ha(2)) and Apaz(Ha(0)) is based on the Lanczos
method, which is very appropriate for computing the extreme eigenvalues of hermi-
tian matrices.

Our work consists in :

e computing A..(H.(0))
o discretizing the complex plane

e computing, for each point z

z—¢(z) = loguo([|All2ll(A = 21)7*]2)

= loglo[)\mam(Ha(O)))\min(Ha(Z))] :

Because the variations of ||[(A — zI)7!||2 in the neighbourhood of an eigenvalue are
extremely stiff, the level curves of = — ||Al|2||(A — zI)7||2 corresponding to a uni-
form scale are not very informative. To circumvent this difficulty, we can use rather
an exponential scale, which amounts to a uniform scale for z — ¢(z).

3 Spectral portrait computation

In this section we examine the sequence of operations required for the evaluation of
a spectral portrait. First we list the steps to determine the spectral portrait, as well
as the algorithm used to estimate the required eigenvalues. Then, we present the
strategies and versions implemented to improve the computational performance.

3.1 Spectral portrait determination

The basic steps required for the determination of the spectral portrait are described
below :

Step 1. Compute ||A]|2.

Step 2. Define a region of the complex plane by z; and z,.

Step 3. Discretize the region by zmesh and ymesh.

Step 4. For each point z of the discretized region, compute |[(A — 2I)~!||2.



e Step 5. Graphical processing using Matlab.

z1 and z, are the lower left point and higher right point of the discretized space,
respectively.

xmesh and ymesh are the number of discretization points on the real and imaginary
axis, respectively.

In order to define the region to be studied, we recall that each eigenvalue A of A
satisfies |A| < ||A|[2. Thus, for a global analysis of the spectrum, the region under
study must contain more than the disk (0, ||Al|2) because of the possible diffusion of
some eigenvalues outside the spectrum (see Figure 7).

Moreover, in the case of real matrices, the spectral portrait is symmetric with re-
spect to the real axis. Thus, if the chosen region includes the real axis, we can
restrict the computation to the upper or the lower part of the complex plane.

The computation of ¢(z) requires the determination of Aqz(Ho(0)) and Apin(Ha(2)),
which will be examined in the next section.

3.2 Eigenvalue computation

The technique used for the computation of the eigenvalues is based on a Lanczos

: B 0 (A—=zI) )
method applied to H,(z) = <(A ey 0 .
We use the subroutine HLDRVS, which is described in Marques (1994). Some im-
portant characteristics of this code are given below.

3.2.1 GGeneralities

The unique routine HLDRVS sets values for control parameters, computes some eigen-
values of H,(z) (usually the extreme ones) and, if required, the associated eigenvec-
tors. The algorithm used by HLDRVS requires the multiplication of a vector by the
matrix H,(z), until the convergence for the prescribed number of solutions is reached.
However, every time a matrix-vector multiplication has to be performed, the control
is returned to the user (reverse communication strategy). Thus, the matrix H,(z)
does not have to be passed as an argument.



3.2.2 Method

The algorithm used by HLDRVS is based on the Lanczos method, in combination with
a modified partial reorthogonalization strategy.

The basic idea consists in the generation of a Krylov basis of vectors Q; = [q¢1, ..., ¢;],
with j < n, such that the projection of H,(z) into @); leads to a reduced problem, i.e.

Q;Ha(Z)Qj = Tj )

where T} is a symmetric tridiagonal matrix.

Assuming that (6,y) is an exact eigensolution of the reduced problem, (6,Q;y) is
an approximate solution of the original one. We define as (5\,%) the pair (0,Q;y)
computed in finite precision arithmetic.

We denote by m the maximal size of projection and p the number of required eigen-
pairs. Thus the minimal size of the Krylov basis is greater than or equal to p.

tol denotes the threshold for convergence (backward error).

The algorithm is summarized below.

1. Initialization:

set go =0 and ; =0
set g1 # 0 so that ¢f¢1 =1

2. Lanczos steps:
for j=1,2,... m
a) compute r; from ¢;

b) rj «—r; —qj-153;

. * .
i 45T

NLY
2

g) if required orthogonalize ¢; and ¢;1+1 against the vectors of @;_4
h) insert q; mto Q]‘, t]'7j_1 — 13j7 tj—Lj — 13j7 th — O

i) solve the reduced problem Ty, = yibs
j ) check ne, the number of eigenpairs for which

[Ha(2)F = Azll2 = 118511y 2 < tol || Ha(2)]]2

If nc > p, exit.

3. Compute the restarting vector if necessary and Goto 2
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The steps a) and j) will differ according to the matrix to be treated : A or (A—z1)"".
We will now examine both cases.

3.2.3 The computation of || A|;

We compute [|A||2 = Apaz(Ha(0)).
Step a) of the algorithm corresponds to
rj < Ha(0)g; ,

and taking into account the sparsity and the block structure of H,(0), we can rather

compute
r]I- = Aq]U and T']I-I = A*q][

where r; = (rf, rI1)T and ¢; = (¢}, ¢!")".

The stopping criterion (step j) of the algorithm is based on the backward error anal-
ysis. .

The backward error related to the i** eigenpair (\;, #;) is given by

_ I Ha(0)3: — M|z
Ha(0)]2

n(0);

The numerator can be computed using information provided by the Lanczos code.
Indeed, at the 7' step of the algorithm, we have

HH‘I(O)'%Z - 5‘2%2”2 = /3j_|_1|’y2(j)| ,

where 3;,, is the normalizing factor associated with the (j 4+ 1) Lanczos vector

and yz(])

reduced problem?.

Since H,(0) is hermitian, ||H,(0)||2 can be estimated by Aq0z(H4(0)).

is the last component of the eigenvector related to the :** eigenvalue of the

3.2.4 The computation of ||(A — z1)7!||

We want to compute ||(A — z1)7 2 = Auin(Ha(2)).

Since the Lanczos algorithm converges faster to the largest eigenvalues, we compute

1 : Bitily!”]
provided that EAOIE

> machineprecision . See Bennani and Braconnier (1993b).
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Amaz(Ha(2)71) instead of Auin(Ha(2)).
Step a) of the algorithm previously described, becomes

rj — Ha(2)"q; -

Actually, we do not explicitly invert the matrix H,(z), but we solve the system
H.(z)r; = q; exploiting its block structure.
In other words, we compute

(A— 2])*7"]1- = q]U and (A — Z])TJU =q!.

J

However, using the subroutine ZGETRF from the LAPACK library (see Anderson, Bai,
Bischof and al. (1992)), we perform only the LU factorization of (A —zI) which allows
us to solve both linear systems using the subroutine ZGETRS.

It should be noted that, if z corresponds to an eigenvalue, the LU factorization
is not possible. In this case, the LAPACK library returns an appropriate flag and by
default we set ||(A — zI)7!||s = 10'® which corresponds to the machine precision.

As in the case of [[A|; computation, the stopping criterion associated to the itk
eigenpair (\;, ;)
Ha z _ISZ'Z' — S\Zfz 2
RN C S
[Ha(z) 7 ]2

can be estimated by the Lanczos code for the numerator and by A...(H.(z)™") for
the denominator.

As we have seen, we actually compute the largest eigenvalue for both ||A]|z and

|(A — zI)7!|2. In some cases, we have to use a restarting strategy.

3.2.5 Restarting strategy

The vector ¢; introduced in the Initialization step of the algorithm previously de-

scribed is defined by

= 1(1 1, ...1)"
ql_\/ﬁ , Ly .

When the basis size reaches the maximal number of steps allowed, m, and the con-
vergence of A4 (Ha(2)) is not reached, the Lanczos code is restarted taking

'I.‘T)'L(l.’l?

Q= =
|2 macll2

as starting vector, where z,,,, is the eigenvector associated with the largest eigenvalue

of Ha(z).
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3.2.6 Implementation details

It should be noted that the sparsity of the matrix is not taken into account. As it can
be seen in the User’s Guide section, the spectral portrait computation code called
portrait can deal with matrices from the Harwell-Boeing collection (Duff, Grimes,
and Lewis (1992)). For the input of the matrices, we use the subroutine readmt from

the SPARSKIT library (Saad (1993)) but such matrices are stored as dense.

4 Numerical results

4.1 Description of the Figures

Before presenting the numerical results, in Table 1 we list the characteristics of the
examined problems as well as the corresponding Figures.

Figure Matrix Size Mesh m | p| tol | Symmetry
3 Wilkinson 50 | 128 x 128 | 35 |3 1073 yes
4 La Rose 10 | 128 x128 | 10 |3 | 107* yes
) Tolosa 135 | 128 x 128 {120 | 3 | 107* yes
6 Pores3 532 | 50 x 100 | 300 |3 | 107* no
7 Electromagnetism | 288 | 128 x 128 | 150 | 3 | 10~* yes

Table 1: Description of the Figures

As we can see in Table 1, the minimal projection size p is equal to 3 in all cases. This
size has shown to be suited for all applications since it is a minimum and we have the
possibility to restart.

A value of about 10™* for tol, the backward error, seems to be generally enough
to assure a good estimation of the eigenvalue. A smaller tol would lead only to a
refinement of the associated eigenvector, which is not required in the analysis.

The scale given with the pictures indicates z — é(z) = logio(||A||2||(A — z1)7|2).
However, a value of 16 has been used as a cut off, which corresponds to —log¢,
where ¢ is the machine precision in double precision arithmetic.

In addition, we have taken profit of the symmetry, as described in section 3.1, as
often as possible. The last column of the Table 1 indicates if the symmetry was
taken into account or not. For the Wilkinson matrix, for example, we have exam-
ined a 128 x 128 mesh. However, taking the symetry into account, the analysis was
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restricted to the half upper plane with a 64 x 128 mesh.

4.2 Test cases

4.2.1 W(50), a Wilkinson matrix and a very striking example

The family of Wilkinson matrices is made of upper bidiagonal matrices. A matrix of
size n, denoted by W(n), is defined as follows

w;; =1, W41 =n and w;; =0 for j #vori+41,
so that its eigenvalues are {1,2,...,n}.

In Figure 1, we have plotted the spectrum of W (50) computed by the QR algo-
rithm available in Matlab. In Figure 2, we give the spectrum of Q*W (50)Q) computed
in the same way, where ) is an orthonormal matrix. Thus Q*W(50)Q) and W (50)
have the same spectrum, Q*W (50)Q is not bidiagonal but full. As we can see in
Figure 2, the computed spectrum is far away from the exact one.

1
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0.2

0

—0.2F
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Figure 1: Spectrum of W(50)
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Figure 2: Spectrum of Q*W(50)Q

Such a behaviour can be explained by the examination of the spectral portrait. As we
can see in figure 3, even with a double precision arithmetic (107'¢) it is very difficult
to compute the eigenvalues : a large ellipse encloses the exact spectrum. This ellipse
corresponds to the set of eigenvalues of any A + AA, where |[AA]l; < 1071 A4]|2.

In other words, the spectral portrait shows that all the values inside the ellipse might

be erroneously considered as possible eigenvalues (i.e. approximated eigenvalues with
a backward error of machine precision).
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1 14

1 12

10

0
-20 -10 0 10 20 30 40 50 60

Figure 3: Wilkinson matrix

4.2.2 La Rose matrix

The matrix called La Rose is the companion matrix associated with the polynomial
P(z) = (z — 1)*(z — 2)*(z — 3)*(z — 4).
It is defined by

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

A= 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

—864 4968 —12492 18086 —16703 10290 —4287 1194 —-213 22

so that its spectrum has one simple eigenvalue, equal to 4, and three defective eigen-
values of multiplicity 3 : 1,2 and 3 respectively. Considering these multiplicities, the
spectrum is difficult to compute.

The analysis of the Figure 4 shows a collective behaviour mainly in the neighbour-

hood of the eigenvalues 2 and 3. In this region, even with a precision equal to 10716,
it becomes very difficult (indeed impossible) to compute the exact eigenvalues.
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Figure 4: La Rose matrix

Moreover, with this matrix, we have shown that a pigmentation appears in the neigh-
bourhood of the eigenvalues 2 and 3 if the spectral portrait is computed using the
Normal Equation method (see Marques and Toumazou (1995)). This problem, related
with the high condition number of this method for the computation of ||(A — 1)~ ||,
disappears with the Augmented Matrix method.

4.2.3 Tolosa matrix

This matrix has dimension 135 and was provided by engineers from Aerospatiale,
who wanted to compute the eigenvalues with largest imaginary part. The matrix is
associated with the analysis of a flutter problem (Braconnier, Chatelin, and Duny-

ach (1995)).

It is available in the Harwell Boeing collection.

With the Normal Equation method, we used a previous point strategy to speed the
convergence up. The computed spectral portrait did not correspond to the one com-
puted with the SVD method. As we can see in Figure 5, the spectral portrait is now
correctly computed and furthermore a good speed up is achieved with the Augmented
Matrix method (see section 4.3).
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Figure 5: Tolosa matrix

4.2.4 Pores3 matrix

This matrix, from the Harwell Boeing collection, has a symmetric pattern but unsy-
metric entries. It is related with a reservoir simulation and its spectral portrait was
previously computed in Carpraux, Erhel, and Sadkane (1993).

As we can see in Figure 6, the spectrum of Pores3 can be considered as stable be-
cause the largest value on the scale of the spectral portrait is moderate. Therefore,
perturbations less than or equal to 10=7 do not lead to significant changes in its
eigenvalues.

4.2.5 Matrix from Electromagnetism

This problem was given by F. Collino (INRIA and Cerfacs). This matrix is related
with an electromagnetism problem that deals with the diffraction of a transverse-
magnetic wave by a periodic 2D structure. The solution = is computed using an
iterative scheme x;,1 = Az + by where by tend to 0.

As it can be seen on Figure 7, some values larger than 1 might be seen as eigenvalues.
This behaviour can explained the divergence of the iterative scheme used to solve the
equation. This problem will be detailed in a forthcoming technical report.

17



-6150 -6140 -6130 -6120 -6110 -6100

Figure 6: Pores3 matrix

0 0.2 0.4 0.6 0.8 1

Figure 7: Matrix from Electromagnetism
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4.3 About CPU time

In Table 2, we list the CPU time (in seconds) required for the spectral portrait
computation of the matrices presented in the previous section.

Matrix Size Mesh tol | CPU time
Wilkinson 50 | 128 x 128 | 1074 356
La Rose 10 | 256 x 256 | 10~* 340
Tolosa 135 | 256 x 256 | 1074 69837
Pores3 532 | 50 x 100 | 10~* 14256
Electromagnetism | 288 | 128 x 128 | 10~* 15133

Table 2: CPU time

It should be noted that all the spectral portraits described in Table 2 were computed
without taking into account the symmetry with respect to the real axis when it was
possible, in order to make a fair comparison.

Some CPU time tests were performed with the SVD method. Two matrices, namely
La Rose and Tolosa, were treated using the same mesh, 256 x 256. The CPU time
required for the spectral portrait computation was 588 seconds for the matrix La
Rose and 220840 seconds for the matrix Tolosa. Therefore, in the case of La Rose,
the Augmented Matrix method is about two times faster than the SVD method. In
the case of Tolosa, the gain is larger and the Augmented Matrix method is about
three times faster than the SVD method.

Thus, we can say that the Augmented Matrix method is clearly faster than the SVD
method.

5 Conclusion

This work describes an alternative approach to the SVD method for the evaluation of

the spectral portrait. We have used a Lanczos based code to compute some eigenvalues
0 (A—=zI)

(A—zI) 0

This method has been designed to cope with the numerical difficulties encountered

of a matrix < ), for distinct values of z.

with the Normal Equation method (i.e. the computation of the eigenvalues of (A —
zI)*(A — z0I)).
The gain in using the Augmented Matrix method is twofold :

e the computation of ¢(z) is as reliable as with the SVD method,

e the computation of ¢(z) is much faster than with the SVD method.
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Furthermore, the structure of the Augmented Matrix can be taken into account so
that the storage is kept moderate.

A parallel version of the code is currently being performed as well as a sparse storage
version, tuned for the Harwell Boeing collection.
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Appendix

A Description of the code

The main subprogram for the spectral portrait evaluation is portrait.f, which has
the following characteristics :

o It defines work arrays whose dimensions are specified by the parameters NMAX
and MAXW. In order to match a particular application, these parameters can be
redefined by the user as follows :

NMAX must be greater than or equal to n, the dimension of the matrix.
MAXW corresponds to the workspace required by the eigenvalue computation
code.

e It reads the variables that define the type of the matrix to be studied and the
mesh on the complex plane. It also reads the entries of the matrix.

o [t calls the subroutine readHB, which is an interface for READMT from SPARSKIT
(see Saad (1993)), for the input of matrices from the Harwell-Boeing collection.

e It calls maillage for the computation of ||(A — zI)™!||2 and norme for the com-
putation of ||A]|2. These subroutines are interfaces for the eigenvalue computa-
tion package.

B User’s guide

B.1 INPUT files

This section describes the input files required by the spectral portrait evaluation code,
which are the following

e STRATEGY : This file contains the type of matrix to be treated.

H/B matrix? O for no, 1 for y

0

If H/B matrix give the name (*_rua)
no name

e PARAMETER : This file contains the mesh parameters and the control values for
the eigenvalue package. The bounds for the real part are given by xmin and
xmax while the bounds for the imaginary part are given by ymin and ymax. The
partitioning of the region is defined by xmesh and ymesh.
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Give xmin

-4.0

Give xmax

4.0

Give ymin

0.0

Give ymax

1.0

Give xmesh

256

Give ymesh

256

Give the precision(backward error)
1l.e-4

Give the size of the matrix

7

Give the maximum number of step

6

Give the number of required eigenpairs
3

e MATRIX : When the matrix does not belong to the Harwell-Boeing collection, it
must be specified in this file, column by column. See example below.

-2.0

O O O O O O
O O O O O O

25.0
-3.0

O O O O O O
O O O O O O

10.0

O O O O N
O O O O O
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O O O O O O O

O O O O
O O O O O O -

B.2 OUTPUT files

This section describes the OUTPUT files which are

e OUTPUT1 : gives the real part of each point of the mesh.
e OUTPUT2 : gives the imaginary part of each point of the mesh.

e OUTPUT3 : gives the value of ||A]|s][(A — 2I)7!||2 for each point of the mesh,
associated with OUTPUT1 and OUTPUT2.

These files will be used by the Matlab post-processing, in order to visualize the spectral
portrait.
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B.3 Matlab post-processing

The spectral portrait will be visualized using the Matlab routine dessin.m. After
reading the OUTPUT files, this routine uses the intrinsic Matlab functions, pcolor
and colorbar, and the subroutines forme.m and reforme.m.
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